Sleep-Wake States and Problems and Child Psychosocial Development

THOMAS F. ANDERS, M.D.

University of California at Davis, USA

(Published online January 12, 2004)

Topic
Sleeping behaviour

Introduction
There are many studies related to the biological maturation of sleep and waking states in early development. Rapid eye movement (REM) and non-rapid eye movement (NREM) sleep states change in structure and in temporal organization during the first one to two years of development. These changes, which actually begin in-utero, are presumably biologically determined. The REM-NREM ultradian sleep cycle lengthens and REM/NREM timing shifts during sleep. Four stages of NREM sleep emerge as electroencephalographic (EEG) patterns mature. REM sleep decreases proportionately as NREM sleep increases; NREM Stage IV sleep moves to the beginning of the sleep period. The circadian sleep-wake cycle also changes from a polyphasic rhythm during the newborn period to a diurnal rhythm by four to six months of age, as sleep consolidates at night, and waking, except for two brief naps, consolidates in the daytime. But to what extent are these post-natal changes driven by biology? How do psychosocial influences on early development affect sleep-wake state development? Are there interactions between biological and psychosocial influences that result in infant and toddler sleep problems?

Subject
Parents’ concerns about infant sleep problems are the most common complaint brought to physicians and infant clinics at the time of well-child visits. A large literature addresses infant sleep problems, but relatively little is known about what causes them and whether the problem is really an infant problem or a parent problem. That is, if the baby awakens and cries regularly during the night, are the effects of the awakenings and the presumed loss of sleep harmful for the baby? Or are the effects more distressing to the parent, especially the working parent exhausted by repeated middle-of-the-night ministrations to the child?
Research Context

The research context for understanding the unfolding of infant sleep-wake problems in early development is the family’s sleep environment, their individual histories of sleep behaviours and the parents’ values, knowledge and skills pertinent to child-rearing and sleep behaviour. The infant’s age and developmental status are also relevant.

Key Research Questions

Questions requiring further research far outnumber answers currently available. There are some theories about why sleep is important for all mammals, why all mammals exhibit both REM and NREM sleep, and why during the early development of all mammalian species the proportionate amount of REM sleep exceeds NREM sleep, in contrast to adults. But there are no solid, scientific explanations for any of these questions. And for families concerned about sleep problems, there are few data-based answers. How is problem sleep defined in infancy? At what age should parents and/or practitioners be concerned about too much sleep or too little sleep? Is co-sleeping salutary or harmful for the infant’s health, well-being and autonomous development? When should medication for sleeplessness be prescribed? Which, if any, infant, parent or psychosocial factors lead to good sleep? Do children with disrupted night-time sleep exhibit daytime sleepiness or secondary behaviour disorders? What is the relationship between night-time sleep and daytime behaviour? What kinds of treatment (behavioural, psychopharmacologic, psychotherapeutic) should be employed and when? What are the public-health implications of sleep disorders in early childhood? Even the basic issue of how sleep should be studied, in the laboratory, in the home, by objective measures or by parent report measures, has not been resolved. Advice from grandmothers and popular authors abounds. However, studies of large community-based samples using parental and objective measures are lacking.

Recent Research Findings

A number of studies have described the developmental shifts in REM and NREM sleep during early development. The proportionate time spent in REM sleep decreases from 50% at birth to 30% by age three and 20% by adolescence. In contrast, NREM sleep increases from 50% at birth to 80% by adolescence. The REM-NREM ultradian sleep cycle lengthens from 50 minutes at birth to 90 minutes by adolescence. REM/NREM sleep periods begin to consolidate and shift to the night-time by three to four months of age, and waking periods similarly consolidate and shift to the daytime. By one year of age, typically developing children are sleeping continuously for six to eight hours at night with only two to three brief arousals. Morning and afternoon naps constitute daytime sleep. The morning nap is usually given up in the second year of life and the afternoon nap in the third or fourth year.

There are two main kinds of sleep problems during the first few years of life: 1) repeated awakenings associated with crying (signalling), occurring in one- to two-year-olds; and 2) difficulty in falling asleep at bedtime with repeated requests for attention, occurring in two- to three-year-olds. Most often, these problems are defined by parents rather than by objective, quantitative metrics. In typically developing infants and toddlers, temperament (a maternally defined trait), attachment classification, parental stress and
maternal depression have been associated with these problems. In atypically developing infants, sleep problems are often attributed to neurological or physical abnormalities, although psychosocial factors must also play a role.²⁶ It is not yet clear 1) whether night waking problems lead to problems with falling asleep (sleep onset) at the older age; or 2) how frequently they co-occur.

Some clinical sleep disorders, such as obstructive sleep apnea in infants and toddlers, night terrors, sleepwalking and narcolepsy, have been better defined.²⁷ Better medical care is available for these disorders because of the emergence of pediatric sleep specialists and diagnostic sleep laboratories. However, these disorders are relatively rare compared to the “insomnias” described above that plague so many parents.

Conclusions

Sleep occupies a central role in human life. It seems to play an especially important role in early development. It is important to understand the developmental functions of sleep and its biological and psychosocial determinants, especially since sleep problems are such a prevalent complaint of parents of typically developing children, as well as parents of children with neurodevelopmental disorders and other behavioural, psychological and physiological conditions. Drugs to promote sleep remain the most inappropriately prescribed medication. More research is needed.

Implications for Policy and Services

Understanding sleep and its disorders is a lifespan issue of significant scope. The public-health and economic burdens of sleep disorders are staggering. Road fatalities related to sleepiness, especially when coupled with alcohol/drug use, are crippling. Work-related injuries and work-related errors (particularly in the health professions) related to sleep loss and daytime sleepiness are also serious. In childhood, disorders such as attention deficit hyperactivity disorder and behavioural disruptions in autism, traumatic stress disorder and depression may relate to underlying sleep disorders. Children with fragmented or insufficient sleep may exhibit learning, retention and recall problems in school. They may be less able to inhibit emotional responses and thus be prone to impulsive or violent outbursts. Finally, in young infants and toddlers, disrupted and/or problematic sleep is a stress on the entire family. Child abuse may result from the worst-case scenario; parental inability to function appropriately at work (especially in families with two parents working outside the home) may result from the best. The costs of disordered sleep to society, to the healthy development of children and to the well-being of families are huge. Early exposure to good sleep hygiene is imperative.
REFERENCES

To cite this document:

Copyright © 2003